LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600034

B.Sc. DEGREE EXAMINATION - MATHEMATICS
 FIFTH SEMESTER - APRIL 2010
 MT 5508/MT 5502 - LINEAR ALGEBRA

Date \& Time: 3/05/2010 / 1:00-4:00
Dept. No.
Max. : 100 Marks

$\underline{\text { PART - A }}(\mathbf{1 0} \mathbf{X} 2=20)$

Answer ALL questions.

1. Illustrate by an example that union of two subspaces of a vector space need not a subspace.
2. Define linearly dependent and independent vectors in a vector space.
3. When do you say that two vector spaces are isomorphic?
4. Define rank and nullity of a homomorphism.
5. If x is orthogonal to y in an inner product space, show that $\|x+y\|^{2}=\|x\|^{2}+\|y\|^{2}$.
6. Define eigenvalues and eigenvectors of a linear transformation.
7. Show that $\left(\begin{array}{cc}\frac{1}{\sqrt{2}} & \frac{i}{\sqrt{2}} \\ \frac{i}{\sqrt{2}} & \frac{1}{\sqrt{2}}\end{array}\right)$ is unitary.
8. If A and B are Hermitian matrices, show that $A B+B A$ is Hermitian.
9. What is the characteristic polynomial of the matrix $\left(\begin{array}{ll}1 & 0 \\ 2 & 3\end{array}\right)$.
10. Let V be an inner product space. Show that for $T \in A(V), T^{* *}=T$.

$\underline{\text { PART }-B(5 \times 8=40) ~}$

Answer any FIVE questions.

11. Show that a non-empty subset W of a vector space V over a field F is a subspace of V if and only if $a w_{1}+b w_{2} \in W$ for all $a, b \in F, w_{l}, w_{2} \in W$.
12. If $w_{1}, w_{2}, \ldots, w_{n} \in V$, a vector space, are linearly independent, and if $v \in V$ is not in their linear span, show that $\left\{v_{l}, v_{2}, \ldots, v_{n}, v\right\}$ are linearly independent.
13. If V is a vector space of finite dimension and W is a subspace of V, show that $\operatorname{dim} V / W=\operatorname{dim} V-\operatorname{dim} W$.
14. Check whether the following vectors are linearly independent $\{(1,-1,0),(1,3,-1),(5,3,-2)\}$
15. State and prove Schwarz inequality.
16. Let $V=\mathbb{Q}^{3}$ and $T \in A(V)$ be defined by $T\left(a_{1}, a_{2}, a_{3}\right)=\left(3 a_{1}+a_{3},-2 a_{1}+a_{2},-a_{1}+2 a_{2}+4 a_{3}\right)$. What is the matrix relative to the basis $\{(1,0,1),(-1,2,1),(2,1,1)\}$.
17. Find the rank of the matrix $\left(\begin{array}{cccc}6 & 1 & 3 & 8 \\ 4 & 2 & 6 & -1 \\ 10 & 3 & 9 & 7 \\ 16 & 4 & 12 & 15\end{array}\right)$.
18. If $\langle T(v) . T(v)\rangle=\langle v, v\rangle$ for all $v \in V$ an inner product space, show that T is unitary.

SECTION - C $(2 \times 20=40)$

Answer any TWO questions.

19. (a) If W_{1} and W_{2} are subspaces of a finite dimensional vector space V, prove that $\operatorname{dim}\left(W_{1}+W_{2}\right)=\operatorname{dim} W_{1}+\operatorname{dim} W_{2}-\operatorname{dim}\left(W_{1} \cap W_{2}\right)$.
(b) If A and B are subspaces of a vector space V onto a field F, show that $\frac{A+B}{B} \square \frac{A}{A \cap B}$
20. (a) If W is a subspace of a finite dimensional vector space V, show that $V=W \oplus W^{\perp}$
(b) Prove that $T \in A(V)$ is invertible if and only if the constant term of the minimal polynomial for T is not zero.
21. (a) If $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$ are distinct eigenvalues of $T \in A(V)$ and if $v_{l}, v_{2}, \ldots, v_{n}$ are eigen vectors of T belonging to $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$ respectively, show that $v_{1}, v_{2}, \ldots, v_{n}$ are linearly independent.
(b) Show that for an $m \times n$ matrix A over a field F, the row and the column rank are the same
22. (a) Check the consistency of following set of equations. If it is consistent solve it.

$$
x_{1}+2 x_{2}+2 x_{3}=5, \quad x_{1}-3 x_{2}+2 x_{3}=-5, \quad 2 x_{1}-x_{2}+x_{3}=-3 .
$$

(b) Verify Cayley Hamilton theorem for the following matrix and find A^{-1}.

$$
A=\left(\begin{array}{ccc}
1 & 3 & 2 \\
0 & 1 & -1 \\
0 & -1 & -2
\end{array}\right)
$$

